Advances in Immunotherapy for Breast and Ovarian Cancer
Minggui Pan, MD, PhD, Chief, Dept. of Oncology and Hematology
Adjunct Investigator, Kaiser Permanente Division of Research
Clinical Assistant Professor, Stanford University School of Medicine (Affiliated)
Estimated New Cancer Cases* in the US in 2017

<table>
<thead>
<tr>
<th></th>
<th>Males 836,150</th>
<th>Females 852,630</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prostate</td>
<td>19%</td>
<td>30%</td>
</tr>
<tr>
<td>Lung & bronchus</td>
<td>14%</td>
<td>12%</td>
</tr>
<tr>
<td>Colon & rectum</td>
<td>9%</td>
<td>8%</td>
</tr>
<tr>
<td>Urinary bladder</td>
<td>7%</td>
<td>7%</td>
</tr>
<tr>
<td>Melanoma of skin</td>
<td>6%</td>
<td>5%</td>
</tr>
<tr>
<td>Kidney & renal pelvis</td>
<td>5%</td>
<td>4%</td>
</tr>
<tr>
<td>Non-Hodgkin lymphoma</td>
<td>5%</td>
<td>4%</td>
</tr>
<tr>
<td>Leukemia</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>Oral cavity & pharynx</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>Liver & intrahepatic bile duct</td>
<td>3%</td>
<td>3%</td>
</tr>
<tr>
<td>All other sites</td>
<td>23%</td>
<td>22%</td>
</tr>
</tbody>
</table>

*Excludes basal cell and squamous cell skin cancers and in situ carcinoma except urinary bladder.
Breast Cancer Subtypes

1. ER/PR+
 - HER2+
 - HER2-

2. ER/PR-
 - HER2+
 - HER2- (TNBC, Triple-negative breast cancer)
Gene Mutations that Increase Breast Cancer Risk

1. BRCA1/2
2. PALB2
3. p53
4. CHEK2
5. DNA repair genes (RAD51, ATM, etc.)
6. PTEN
7. CDH1
Innate Immunity

Molecular Biology of the Cell 4th Edition
Adaptive Immunity

Immature CD4+ T cell

Antigen

Immature CD8+ T cell

Antigen Presenting Cell

Mature helper T cell (Th1 or Th2)

CD4+

Mature cytotoxic T cell (Tc)

CD8+
What is Cancer Immunotherapy?

To Kill or Not To Kill, That is a Question!
Major Immune Cells for Cancer Immunotherapy

- B lymphocyte
- T lymphocyte
- Dendritic cells
- Natural killer cells
B Lymphocyte that Produce Antibodies
T Lymphocyte

- T cells that kill
 - Helper T cells
 - Cytotoxic T cells
 - Memory T cells
 - Regulatory T cells
Types of Cancer Immunotherapy

- **Monoclonal antibody**: Rituxan (rituximab) for B cell lymphoma
- **Cancer vaccines**: HPV vaccines for cervical, vulvar and anal cancer.
- **Immune Checkpoint Inhibitor**: ipilimumab, nivolumab, pembrolizumab, atezolizumab, avelumab, durvalumab, etc…
- **CAR-T**: Chimeric Antigen Receptor-T cells
- **Adoptive cell transfer**: tumor infiltrating T cells, autologous dendritic cells
Immune Checkpoint Regulation

- Cancer cells develop escape systems to evade immune detection and killing
- Immunotherapy is a type of targeted immune activation
How do Immune Checkpoint Inhibitors Work?

Chimeric Antigen Receptor T Cells (CAR-T)

Anti-CD19 antibody idioype

Co-stimulatory domain

CD19
Adoptive T Lymphocyte Transfer
Checkpoint Inhibitors Approved for:

- Melanoma
- Kidney cancer
- Non-small cell lung cancer
- Merkel cell carcinoma
- Hodgkin’s lymphoma
- Head and neck cancer
- Bladder cancer
- Gastric and esophageal cancer
- Hepatocellular carcinoma
- Any cancer with Mismatched Repair (MMR) Protein deficiency
Common side effects of checkpoint inhibitors

- Diarrhea
- Skin rash
- Pneumonitis
- Hypothyroidism
- Hemolysis
- Liver dysfunction
Checkpoint Inhibitors for Breast Cancer
Breast Cancer Subtypes

1. ER/PR+
 - HER2+
 - HER2-

2. ER/PR-
 - HER2+
 - HER2- (TNBC, Triple-negative breast cancer)
Clinical trials with checkpoint inhibitors

<table>
<thead>
<tr>
<th>Trial</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keynote-12</td>
<td>8% all Triple negative</td>
</tr>
<tr>
<td>Keynote-86</td>
<td>5% all PD-L1 +</td>
</tr>
<tr>
<td>Avelumab</td>
<td>5.4%, all but one PD-L1 +</td>
</tr>
<tr>
<td>Atezolizumab</td>
<td>26% 1st line, 13% 2nd line</td>
</tr>
<tr>
<td>Durvaluamb and Tremelizumab</td>
<td>3/18 responded, 3/7 TN, 0/11 ER+</td>
</tr>
<tr>
<td>Atezolizumab and Nab-Paclitaxel</td>
<td>67% 1st line, 27% 2nd line</td>
</tr>
</tbody>
</table>
Durable response to checkpoint inhibitor

I-SPY-2 Trial: Pembrolizumab plus Neoadjuvant Chemotherapy for Breast Cancer

Tumor size: 2.0 by imaging or 2.5 cm by exam
Taxol weekly plus Pembrolizumab for 12 weeks followed by AC x 4 cycles

<table>
<thead>
<tr>
<th>Signature</th>
<th>Current raw data: pCR/n [total assigned]</th>
<th>Estimated pCR rate (95% prob interval) [equivalent n]</th>
<th>Prob pembrol superior</th>
<th>Pred prob of success in phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR+/HER2−</td>
<td>7/25 (28.0%)</td>
<td>13/88 (14.8%) 34.2% (17-51%)</td>
<td>99.0%</td>
<td>86.8%</td>
</tr>
<tr>
<td>TNBC</td>
<td>15/21 (71.4%)</td>
<td>16/83 (19.3%) 62.4% (45-80%)</td>
<td>>99.9%</td>
<td>99.3%</td>
</tr>
</tbody>
</table>

Nanda et al. ASCO Annual meeting Chicago 2017
NSABP-B59/GBGXX

- Atezolizumab plus neoadjuvant chemotherapy
- TN-BC
PD-L1 Expression in Breast Cancer

Adams et al. JCO 2014, 32, 2959.
PD-L1 Expression and Prognosis in Metastatic Breast Cancer

Adams et al. JCO 2014, 32, 2959
Primming Microenvironment for Checkpoint Inhibitor

Tonic Trial ESMO 2017

Group 1: Radiation Gy x 3
Group 2: Doxorubicin 15mg/m2 x 2 weeks
Group 3: Cyclophosphomide 50mg PO x 2 weeks
Group 4: Cisplatin 40mg/m2 x 2 weeks
Group 5: No treatment

Nivolumab

--50 patients
--ORR 26%
Checkpoint Inhibitors for Ovarian Cancer
Nivolumab for Ovarian Cancer

Hamanishi et al. JCO 2015
JAVELIN Ovarian 100

- Phase III
- First line platinum-based chemotherapy + Avelumab
- Stage III and IV
Factors Predictive of Benefit from Checkpoint Inhibitor

- Tumor biology
- PD-L1 expression
- MMR deficiency
- Tumor infiltrating T lymphocyte
- Gut microbial composition
- Systemic factors
Neutrophil Count Predictive of Progression in Melanoma Patients Treated with Pembrolizumab/Nivolumab

Neutrophils: Blue ≤3900 cells/µL; red 3901-5507 cells/µL; green ≥5501 cells/µL. P for difference <0.0001.
Platelet Count Also Predictive of Progression

Platelets: Blue $\leq 215,000$ cells/μL; red $216,000$-$303,000$ cells/μL; green $\geq 304,000$ cells/μL. P for difference < 0.001.
What is the Future of Immunotherapy?

- Combination with chemotherapy
- Combination with targeted therapy
- Combination with different checkpoint inhibitor
- Identifying specific neoantigens for CAR-T
- Other novel approaches yet to be identified
- CRISPER gene editing
Acknowledgements

- Lisa Herrinton
- Mubarika Alavi
- Kaiser Permanente Cancer Program
- Our entire oncology team
- KP Public Affairs Office
Questions?